
I

NASA Contractor Report 194940

ICASE Report No. 94-53

/

"? "_ s"
(':_ ,,y f'-

#

5

IC S
MULTILEVEL ALGORITHMS

FOR NONLINEAR OPTIMIZATION

Natalia Aiexandrov

J.E. Dennis, Jr.

Contract NAS 1-18605, NAS 1-19480
June 1994

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

O
tt_

OO ¢_
0 _ _0

! " O_
U_ O

Z _ 0

W
0')

U

.J ,_.
Lid

lid 40
.,d O_ L.
_tO

--IZO_

Z,--
0 m

0

0"0

O, 0

!.J _- N

_,0

e_
0

Operated by Universities Space Research Association



m



•i_.,,!'

MULTILEVEL ALGORITHMS FOR NONLINEAR OPTIMIZATION

Natalia Alexandrov

ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton, Virginia 23681-0001

natalia@icase.edu

J. E. Dennis, Jr.

Department of Computational and Applied Mathematics

Rice University

P. O. Box 1892

Houston, Texas 77251-1892

ABSTRACT

Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems

characterized by a large number of constraints that naturally occur in blocks. We propose a

class of multilevel optimization methods motivated by the structure and number of constraints

and by the expense of the derivative computations for MDO. The algorithms are an extension to

the nonlinear programming problem of the successful class of local Brown-Brent algorithms for

nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to

fit the application, and they separately process each block and the objective function, restricted to

certain subspaces. The methods use trust regions as a globalization startegy, and they have been

shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be

applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems

of equations are a special case of the multilevel optimization methods. In this case, they can be

viewed as a trust-region globalization of the Brown-Brent class.
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1 Introduction

This work is concerned with a class of methods, called multilevel optimization algorithms, for

solving the nonlinear equality constrained optimization problem, i.e.,

Problem EQC:

minimize f (x )

subject to C(x) = O,

where f : _'_ _ _ and C : _'_ ---*_m, m <_ n, are at least twice continuously differentiable.

The proposed class of algorithms can be used to solve any general nonlinear equality constrained

optimization problem, but its development has been motivated by the engineering design problems

that give rise to large-scale optimization formulations with constraints occuring naturally in blocks.

In particular, in the multidisciplinary design optimization (MDO) environment, the sheer number

of constraints, the structure of the problems, and the expense of the derivative computations

necessitate the development of flexible algorithms that allow the user to partition the problem into

a set of smaller problems.

While there is a number of nonlinear optimization methods that attack large problems by

decomposing them into several smaller ones, these methods require the problems to have a special

structure, for example, separability and convexity.

In particular, in engineering, decomposition and multilevel optimization have been used to

solve large problems for some time. See [15] and [29] for a survey. The process of decomposition

and multilevel formulation generally depends on identifying groups of variables and constraints

that influence each other only weakly. The problem is then decomposed into such weakly cou-

pled subproblems in various possible formulations, some hierarchic, some nonhierarchic. Recent

developments in formulations can be found in [3] and [9]. Some of the approaches in [3] have been

proven to be successful for many problems. In order to be more widely applicable, it requires the

development of theoretical foundations.

We propose a class of multilevel optimization methods (see [1]), for solving the nonlinear equality

constrained optimization problem characterized by the following features:

• The constraints of the problem can be partitioned into blocks in any manner suitable to an

application, or in any arbitrary manner at all. The analysis of the methods assumes certain

standard smoothness and boundedness properties, but no other assumptions are made on the

structure of the problem. There is no need to identify the weakly coupled groups of variables

and constraints, although that may be helpful in practice. If all constraints and variables

are strongly coupled, the partitioning can be done according to any other criterion useful to

a particular application, for example, just the size of constraint blocks. The algorithm then

solves progressively smaller dimensional subproblems to arrive at the trial step.

• The multilevel methods belong to the class of out-of-core methods. To the authors' knowledge,

the multilevel algorithms are the only algorithms for general nonlinear optimization problems

that require only a currently processed part of the constraints to be held in memory. Thus,

theoretically, there is no limit to the size of the problem the methods can handle.
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* The trial steps computed by the algorithm are required to satisfy very mild conditions, both

theoretically and computationally. In fact, the substeps comprising the trial step can be

computed in the subproblems using different optimization algorithms. The substeps are

only required to satisfy a mild decrease condition for the subproblems and a reasonable

boundedness condition--both satisfied in practice by most methods of interest. This feature

is of great practical significance because in applications like MDO various constraint blocks

may originate from different disciplines and may require different approaches to solving the

subproblems.

. The class uses trust regions as a globalization strategy. The algorithms are proven to converge

under reasonable assumptions.

. The Mgorithms together with their convergence theory provide a foundation for developing

the algorithms and anMyses of the general multilevel optimization formulations.

The proposed multilevel class of algorithms differs from the conventional algorithms in that its

major iteration involves computing an approximate solution of not one model over a single restricted

region, but of a sweep of models, each approximately minimized over its own restricted region. Each

model approximates a block of constraints and, finally, the objective function, restricted to certain

subspaces. Each model is computed at a different point. The case of a single block of constraints

is included.

In the next section we introduce the foundations on which the proposed class of algorithms rests.

Section 3 is devoted to the description of the class. Section 4 briefly describes current theoretica]

results. Section 5 concludes with a summary and discussion of current and future research.

2 Preliminaries

The proposed class of algorithms may be viewed as an extension of several areas of research. In

this section we describe the existing algorithms and analysis schemes which serve as a foundation

for the multilevel optimization methods.

2.1 The Local Brown-Brent Class of Methods

Theoretical origins of this research lie in the method for solving nonlinear systems of equations,

F(x) = 0, F: _n _+ _, introduced by Brown in [5], [6], [7].In [4], Brent viewed Brown's method

from a different perspective, which allowed Brent to propose a class of methods, among which

Brown's original method was a special case. Gay [14] and Martinez [23], [24] provided further

modifications and generalizations of the methods.

The following statement of the general Brown-Brent algorithm was condensed from the de-

scriptions in Gay [14] and Dennis [17]. In these works the algorithm is described in terms of

one-dimensional blocks.

Denote the components of F(x) by Fl(x),..., F_(x).

Algorithm 2.1 Local Brown-Brent Algorithm for Nonlinear Systems

Let xc be the current approximation to the solution.
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Outer Loop: Do until convergence:

yo = Xc

Ho = H _

Inner Loop: Do k = 1, n
k-1

1. Form the linearization, Lk about Yk-1 of Fk restricted to Ni=0 Hi.

Lk = 0 defines Hk, an (n - k)-dimensional hyperplane in H'_.
k-1

2. Move from Yk-1 E _i=o Hi to Yk E _/k=o Hi.

End Inner Loop

Xc -= Yn

End Outer Loop

The point Yn of intersection of all the hyperplanes is the point where all the linearizations vanish.

The way in which the steps 1-2 of the inner loop are actually done determines the particular kind

of Brown-Brent method. In Brent's method, sk = yk - Yk-1 is the shortest _2 norm step from

yk-1 to Hk. In Brown's method, sk is the shortest _2 norm step from Yk-1 to Hk parallel the k-th

coordinate axis.

When applied to a linear system of equations, i.e., when F(x) = Ax - b, Brown's method is

equivMent to Gaussian elimination with pivoting about the maximum row element of the reduced

matrix [5], while Brent's method is equivalent to factoring A into a product of a lower triangular

matrix and an orthogonal matrix [4]. It can be shown, based on [31], that there exists a Brown-Brent

analog for any matrix decomposition in the linear case.

Brown [5], [7], Brown and Dennis [8], Brent [4], and Gay [14] established local quadratic con-

vergence of variants of the algorithm, both for analytic and finite difference derivatives. To the

authors' knowledge, there had been no theoretically supported global extensions of Brown-Brent

methods until [1].

2.2 Trust-Region Methods

Consider the following unconstrained minimization problem.

Problem UNC:

_ "•i •

, /

ii _

minimize f ( x )

x E H n,

where f : H _ _ H is continuously differential. Given xc, the current approximation to the solution,

a trust-region algorithm for solving the problem finds a trial step by solving the following trust-

region subproblem approximately:

minimize f(xc)+ Vf(xc)TS + lsTHcs (1)

subject to Ilsll <_ 5c,

where f, df_E H, V f, s E H n, H_ = H T E Hn×_ is the Hessian of f or an approximation to it, df_> 0

is the trust-region radius, and I1" II denotes the _2 norm. The idea is to accept the trial step when

the quadratic model adequately predicts the behavior of the function, and to recompute the step

in a smaller region if it does not.

/i '
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The trust-region approach to the problem of solving systems of nonlinear equations is just a

special case of the approach to the problem above; namely, for nonlinear equations, the objective

function f(x)is taken to be IIF(x)ll'_.

Detailed treatment of the trust-region approach to unconstrained optimization and nonlinear

equations can be found in Dennis and Schnabel [18], Sorensen [30], Mor6 [25], Mor6 and Sorensen

[26], Powell [21], and Shultz, Schnabel and Byrd[28].

For the equality constrained optimization problem, the successive quadratic programming (SQP)

algorithm is used commonly. Its step is found by computing a minimum of the quadratic model

of the Lagrangian at the current point, subject to linearized constraints. A trust-region algo-

rithm based on SQP adds the trust-region constraint to the subproblem and additional constraints

designed to ensure that the trust-region constraint and the linearized constraints are consistent.

2.2.1 Merit Functions

In order to evaluate a trial step, trust-region algorithms use merit functions, which are functions

related to the problem in such a way that the improvement in the merit function signifies progress

toward the solution of the problem.

For unconstrained minimization, a natural choice for a merit function is the objective function

itself. Let

¢(s) = f(Xc) + Vf(xc)Ts + 2sTHcs (2)

denote the quadratic model of the merit function. We define two related functions.

The actual reduction is defined as

aredc(sc) = f(Xc) - f(x¢ + so),

and the predicted reduction is defined as

(3)

predc(s_) = ¢(0) - ¢(s_) (4)

1 T

= --Vf(xc)T(s_)-- _sc H_s_,

so that the predicted reduction in the merit function is an approximation to the actual reduction

in the merit function.

The standard way to evaluate the trial step in trust-region methods is to consider the ratio of

the actual reduction to the predicted reduction. A value lower than a small predetermined value

causes the step to be rejected. Otherwise the step is accepted.

For nonlinear systems of equations, the norm of the residuals serves as a merit function. For the

constrained optimization, the merit function is some expression that involves both the objective

function and the constraints.

We shall see that conventional merit functions prove to be inadequate for multilevel algorithms.

2.2.2 Fraction of Cauchy Decrease

To assure global convergence of a trust-region algorithm for problem UNC, the trial step is required

to satisfy a fraction of Cauchy decrease condition. This nfild condition means that the trial
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step, s_, must predict at least a fraction of the decrease predicted by the Cauchy step, which is the

steepest descent step for the model within the trust region. We nmst have for some fixed _ > 0

CP- ¢(0) ) - ¢(0)], (5)

where

cP -acPVf(x_) with

IIvf(_)ll2 if HV/(xc)]]3 < ¢_cacCP ---- _Vf(_)TH_Vf(xc) otherwise.V](xc)THcVf(xc) --

IIvl(x_)ll

See Dennis and Schnabel [18], pp. 139--141, for details on the Cauchy point.

The fraction of Cauchy decrease property implies a weaker condition which has a more conve-

nient form and is frequently used as a technical lemma in the global convergence proofs.

Lemma 2.1 Let sc satisfy (5). Then

¢(0) - ¢(s_) >_ _-211Vf(x_)[I min • (6)

References: Powell [21]; Mor6 [25].

Either (5) or (6) is necessary to estublish global convergence theoretically.

2.2.3 Global Convergence Results

Powell's global convergence theorem [21] for any unconstrained minimization trust-region algorithm

serves as a prototype for most trust-region related convergence results.

Theorem 2.1 Let f : _7_ _ _ be continuously differentiable and bounded below on the level set

{x • _[f(x) _< f(x0)}. Assume that {Hi} are uniformly bounded above. Let {xi} be the sequence

of iterates generated by a trust-region algorithm that satisfies (5) or (6). Then

liminf IlVf(xdll = 0.
Z---+ OO

Detailed treatment of the unconstrained minimization theory and practice can be found in Mor6

[25], Mor6 and Sorensen [26], Sorensen [30], and Shultz, Schnabel and Byrd [28].

2.2.4 Tangent-Space Methods for Constrained Optimization

The multilevel methods proposed here may be viewed as a generalization of an approach to nonlinear

programming known as the null space or generalized elimination approach (see Fletcher [13]).

Different authors refer to different methods as "null space methods", but the general idea of a

null space method for equality constrained minimization is to reduce the dimension of the problem

by first taking the step intended to solve the constraint equations, and then to minimize the model

of the function restricted to the null space of the linearized constraints. The resulting minimization

problem is of a lower dimension than the original one.
A well-known local method of this type is the GRG (Generalized Reduced Gradient) algorithm.

Details of GRG and other null space methods can be found in Lasdon [20], Fletcher [13], Avriel [2],

and Gill, Murray and Wright [27].

5
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A class of global trust-region algorithms that use the same general principle of reducing the

problem's dimension is known as the class of tangent space methods. The tangent space approach

was introduced to avoid the possibility of inconsistency of the constrained trust-region subproblem.

Recent work on these methods can be found in Maciel [22] and Dennis, E1-Alem and Maciel

[19]. The main feature of the class is that the trial step is computed as a sum of two substeps, the

first of which is made toward the linearized constraints in the direction orthogonal to the null space

of the constraint Jacobian, while the second is made to minimize the model of the Lagrangian in

the null space of the linearized constraints. The function and derivative information is computed

at a single point xc.

The multilevel methods proposed here generalize the tangent space methods in the sense that

their trial steps are sums of not two substeps but of as many substeps as there are constraint

blocks together with a substep on the model of the objective function with the model information

computed at the points resulting from taking the substeps one-by-one.

3 Multilevel Algorithms for Nonlinear Optimization

In this section we present the class of multilevel optimization algorithms for the nonlinear equality

constrained minimization problem. Since the time of its introduction in [1], the class has undergone

changes. In [1], the globalization and extension to constrained optimization only of local Brent's

method was proposed. Recent developments* have extended the results to provide globalization

and extension to constrained optimization of the entire local Brown-Brent class.

3.1 Notation

Due to arbitrary blocking of the constraints, the notation becomes cumbersome. To ease the

reading effort, we omit the subscripts and superscripts where possible. Here is an explanation of

the notation conventions.

Unless specified otherwise, all norms are g2 norms.

/,From here on, we assume that the equality constraints of problem EQC are partitioned into

M blocks of arbitrary size and composition. Let the constraints of the first block be numbered

from nl = 1 to _t2 -- 1; the constraints of the second block--from n2 to n3 -- 1; and so on, until the

constraints of the last block are numbered from nM-1 to nM= m.

The algorithms will be formally considered to have an outer loop, in which we make the decision

about the acceptability of the step, and the inner loop, in which we solve a sequence of minimization

subproblems. The sum of the substeps produced as solutions of these subproblems yields the total

trial step. The outer loop counter is i; the inner loop counter is k. Thus k corresponds to the

block number of constraints. If the subscript k is used with a constant, that constant refers to

the properties of the k-th block of constraints, independent of the iterates. Note that the term

"inner loop" is formal. The purpose of the inner loop is to compute a basis for the null space of the

Jacobian of our constraint system, but step-by-step, using information at different points, instead

of the simultaneous computation of, say, the Newton's method.

*Natalia Alexandrov and J. E. Dennis, Jr. A class of general trust-region multilevel algorithms for systems of

nonlinear equations: Global convergence theory. In preparation.

, : . • : .
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We denote the sequence of points generated by the outer loop of the algorithm by {xi) when

we consider the iterates as members of the sequence in convergence analysis. Otherwise, we use xc,

x_, and x+ to denote the current, the previous, and the next iterates, respectively.

We denote the sequence of points generated within each inner loop by yk, k = 0,..., M + 1,

when we need not consider the outer loop iteration number. Most of the time we shall be discussing

entities within a single iteration. Otherwise, we use subscripts and superscripts. For example, y_

or y_: denote the inner k-th iterate within the i-th outer loop. Note that y0 = xc and YM+I = x+.

The substep produced by solving the k-th subproblem of the inner loop is denoted by sk, k =

1,..., M + 1. The sum sl +... +-qM+I yields the total trial step _c. Again, we use subscripts, e.g.,

_ii, to denote the total step as a part of the sequence of steps produced by the algorithm.

We denote the radius of the trust region for subproblem k, centered at yk-1, by _k, k =

1,..., M + 1. The radius of the total trust region, centered at xc = yo is _ or _i.

We donote the projector onto the intersection of null spaces of VC](x),..., VCk(x) by Pk.

AgMn, when we omit superscripts, we refer to the objects within a single outer loop. For

C i C cexample, Ck(yk-1) refers to k(Yk-1) or k(Yk-1)"

Additional notation will be introduced as needed.

3.2 General Description

The general glass of multilevel algorithms can be described in the following way. The constraint

system of the problem is partitioned into M arbitrary blocks. In practice, this block decomposition

is obvious in most cases. At the current approximation to a solution of problem EQC, x_, we set

Y0 = x_. The trial step is computed as follows.

We find an approximate minimizer, sl, of the quadratic Gauss-Newton model about y0 of the

first block of constraints in the trust region of radius 51- The step is required to satisfy a fraction

of Cauchy decrease condition for this model and a mild boundedness condition disussed in the next

subsection. The step is taken to yield the point yl = y0 + Sl.

We then find an approximate minimizer of the quadratic model of the second block of con-

straints, restricted to the null space of the Jacobian of the first block. This model is built using the

information at the new point. It is important to emphasize that all the function and derivative

information for the second block is computed at the new point Yl. The next step, s2, bounded by

its own trust-region, is obtained to satisfy a fraction of Cauchy decrease condition for this restricted

model of the second block. The step is taken to yield the point y2.

The process of computing steps that satisfy sufficient predicted decrease for the restricted models

of progressively smaller dimensions continues. Again, the model for each block is built by

using the function and derivative information at the most recently computed point.

The final step on the constraints, SM, is obtained to produce sufficient predicted decrease in the

quadratic model, at YM-1, of the last block of constraints, restricted to the intersection of the null

spaces of the Jacobians of all previous blocks.

When all the• constraint blocks have been processed, n - m degrees of freedom still remain.

The remaining variables are used in building a model of the objective function, so that the final

substep, SM+l, is obtained to produce sufficient predicteddecrease in the quadratic model at YM

of the objective function, restricted to the intersection of the null spaces of the Jacobians of all

constraint blocks. The final step is taken to yield the next major iterate, i.e., the next approximation

7
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to a solution of problem EQC. Thus, the total trial step from xc to x+ is the sum of the substeps

in the inner sweep, i.e., _c = sl + ... + SM+l.

Unless the convergence criterion is met, the total trim step is evaluated, and the algorithm

returns to process again the first block of constraints in a trust region determined by the success

or failure of the trial step.

]

• i¸ • •

3.2.1 Computing the Substeps

During the constraint elimination stage, the substeps solve the following subproblems:

minimize ½11Ck(yk_l ) + _zCk(Yk-1)T sll2

subject to VCj(yj_I)Ts = O,j = 1,...,k- 1,

and possibly an additional constraint

on the step direction,

and llsll <

(Note that for k = 1 there is no null space constraint.) Then the objectivefor k = 1,...,M.

function subproblem is:

minimize f(YM) + V f(yM) Ts + ½sT H(yM)s

subject to VCj(yj_I)Ts = O,j = 1,...,M,

and possibly an additional constraint

on the step direction,

and Ilsl12<  M+I.

If there is no additional constraint on the direction of the step, the subproblems produce a

trust-region generalizaton of the local Brent step. A constraint requiring that the step be parallel

to some coordinate hyperplane would be a generalization of the local Brown step. In practice, there

is no explicit constraint for the generalization of the Brown step; rather it is computed implicitly.

Let Qk-a be a matrix the columns of which form a basis for the intersection of the null spaces of

VCI(y0),..., VCk-l(yk-2). A change of variables, v = Qk-as, converts the constrained subprob-

lems to unconstrained ones.

For relatively small problems, the null space bases can be computed by using the QR decom-

position to find the basis for null space of VCI(Y0), and then by updating the decomposition for

subsequent subproblems to find a basis for the null space intersections. For larger problems, the

QR decomposition becomes prohibitively expensive. In that case, reduced basis projectors can be

used. More details about the null space basis computations can be found, for example, in [27].

There are various methods for solving large-scale trust region subproblems. We are holding

much hope for the method recently developed by D. Sorensen of Rice University.

'However, once the subproblems with null space constraints are converted into unconstrained

trust-region subproblems, the steps may be chosen in any manner, as long as they satisfy two mild

conditions.

1. As mentioned earlier, if there are no additional constraints on the subproblem k, its solution,

a Levenberg-Marquard step for the reduced problem, produces a generalization of the Brent
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step. That is, the substep is orthogonal to the linearized constraint hyperplane, for all blocks

numbered k + 1,...,M. However, we do not require that the substeps be orthogonal. We

require that each substep satisfies

II kll_ AkllC'k(Yk-1)ll (7)

for some positive constant Ak that depends only on the properties of that particular constraint

block but is independent of the iteration. Other conditions are possible to assure global

convergence. However, this condition, first formalized in [19], is reasonable in that it is

enforced automatically by any algorithms of interest for computing linearly feasible points.

For instance, this is easily shown for the extensions of both Brown and Brent steps.

We also require for each substep to satisfy a fraction of Cauchy decrease condition for the

particular subproblem that substep solves. This is also a very mild condition--it is satisfied by

all reasonable methods. Note that we do not place any conditions on the total trial step--only

on the substeps.

B-B is an unconstrained Brown or Brent substep (or any substepIt is easy to show that if s k

out of the local Brown-Brent class), we can claim the following:

B-B Otherwise let/f ]ISkB-BH <_ 6k, then let Sk = s k •

(8)
sk-ii  _sl I

Then sk satisfies the fraction of Cauehy decrease condition on suOproblem k. The proof is

given in Alexandrov and Dennis t.

Thus, we see that simply truncating the unconstrained Brown or Brent substep to the size

of the trust region will produce sufficient predicted decrease in the models of the constraint

blocks.

3.2.2 The Merit Function and Its Model

Merit functions used to evaluate the progress of single-block trust-region algorithms consist of some

combination of the objective function and the constraints. One common merit function is the _2

penalty function f(x) + pllC(x)[I 2, where p is the penalty parameter.

In the process of the multilevel algorithm development, it has become apparent that conven-

tional merit functions are inadequate for measuring progress of the multilevel methods, because a

conventional merit function does not take into account the order in which minimization proceeds.

The difficulty can be summarized as follows:

• The result of the k-th minimization subproblem predicts decrease for the k-th component

from point Yk-1 to point Yk. It predicts no change for all previous blocks. However, there

is no prediction at all about how Sl + ... + sk changes and likely increases the norms of the

blocks numbered k + 1,..., M. Neither does any substep, except SM+l predict the behavior

of the objective function,

tNatalia Alexandrov and J. E. Dennis, Jr. A class of general trust-region multilevel algorithms for systems of

nonlinear equations: Global convergence theory. In preparation.



This observation brought us to the conclusion that the merit function must take into account

the multilevel structure of the scheme. Consider the following modified e2 penalty function:
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_:)(XIpl,-..,PM) = I(X) + pM(llCM(x)l[ 2

PM-I(IICM-I(X)[[ 2 + PM-2(IICM-2(x)[[ 2 + ... + p2(llC_(x)ll 2 + p_llC_(_)ll2))))
M M

= f(x)+ Y]_(II _)llCk(x)ll 2,
k=l j=k

where Pk >_ 1, k = 1,..., M. where Pk >_ 1, k ---- 1,..., M. The initial choice Pk = 1 is arbitrary

and scale-dependent. The only requirement is that Pk >_ 1. For theoretical purposes, the problem

is assumed to be well-scaled.

The new merit function penalizes for the possible predicted increase in the constraint blocks

k,..., M, or in the objective function that may have occured during inner loop iterations 1,..., k- 1.

At YM+I = x+ = xc + Sc, we model each IlVk(X+)ll 2 by IICa(yk_l) + VCk(Yk-1)skll 2, and so we

model the merit function at x+ by

Jk'tc(Sl, • •., SM+I; p_,..., p_/) = f(YM) + _7f(yM)TSM+I -[- lsT+I H(yM)SM+I

+IICM(YM-1) + VCM(YM-1)T sMll 2 -I- pCM_1(IICM-I(YM-2) + VCM-I(YM-2)TsM-1 II2

C C • • •+PM-_(II M-_(YM-_) + VCM-_(YM-_)TsM-_II_+

+p_(llC2(yl ) + VC2(yl )T s2[I _ + PTIIC, (Yo) + VC,(yo)T_,II_)))
1 T

= f(YM)-]-Vf(yM)TsM+I -]- -_SM+IH(yM)SM+I

M M

+ _(lI pj)llCk(y,-,)+ VCk(yk--1)Tskll 2"
kin1 jmk

We define the actual reduction as the difference between the merit function values at xc and

x+, and we define the predicted reduction as the difference between the value of the merit function

at xc and the value of the model at x+.

c

3.2.3 Updating the Penalty Parameters

This penalty parameter updating scheme for multilevel methods generalizes the scheme proposed

in E1-Alem [10], [11]. It ensures that our merit function has an essential property, namely, that

unless an iterate is optimal, the predicted reduction should always be positive. We use the following

procedure:

Algorithm 3.1 Penalty Parameter Updating Algorithm (Done on completion of each inner

sweep of minimization problems.)

°

2.

Denote the set {Sl,..., Sk} by Sk and denote the set {Pl,..., Pk} by Ok.

At the beginning of a multUevel algorithm, set Pl ..... PM = 1 and choose/3 E (0, 1).

Compute Cpredl(sl) = Ilcl(y0)ll2 - IlC_(yo)+ vcl(yo) Tsll[2.
Dok=l,M

10
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Update pk.

Compute

Cpredk+l(Sk+l; cPk-i'Pk ) =

[llck+_(yo)[? -IlCk+i(Yk) + VCk+_(yk)%k+_ II2

+p-_ Cpredk (Sk; pCk_ 1)"

if Cpredk+l (Sk+l ; P_-I, P_-) -->

_Cpredk(Sk; P_k-1) then

,_ = Pi--
Cpredk+l (Sk+l ; _ok-_, pl) =

SCpredk+l ( k+l; Pk-1, Pk)"

else

Pl = fik +/_,
where fik = 2[Hck+_(yk)+vc_+_ (uk)Tsk+l n 2-HCk4-i (Y0)112]

Cpredk (Sk ;p__l )

Compute Cpredk+l (Sk+l; P_-I, P_)"

end if

end Do

3. Update PM.

Compute

pred(SM; PM-2, PM-1) =

[f(Y0) - CM( SM )] + PMCpredM( SM; P_M-1)"

if pred(SM; P_/-2, PM-1) >-

P@CpredM( SM; pcM_l) then

P_M= PM"
pred( SM; P_M-2, P_M-1 ) = pred( SM; P_4-2, PM-1 )"

else

p_4 = p_ + _,
2[_.(_)-s(y0)]

where p_/= Cp_dM(SM;P_M__).

Compute pred( SM; pcM_2, pcM_l ).

end if

End

Note that without updating the penalty parameters we can be assured of the positive predicted

reduction from xc only for the first block of constraints, i.e., only Cpredl(81) is definitely positive

without additional considerations. To ensure that Cpred2(sl,s2;pl) is positive, we may have to

increase pl. Now that Cpred2(sl,s2;Pl) is positive, we use it to ensure that the next partial

predicted _eduction is positive, and so on. So, for each each substep sk, the predicted reduction

accumulated by the step Sl + ... + sk is at least a fraction of the predicted decrease accumulated

by the step sl + • • • + sk-1.

Thus the predicted reduction of the first block is the most heavily penalized one.

It should be emphasized that the step computation is completely independent of the penalty

parameter computation.

11
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3.2.4 Step Evaluation and Trust-Region Radii Updating

Although there are various schemes of evaluating the trial step and updating the trust region radii,

for the sake of simplicity in discussion, we adopt the following strategy:

• The total trial step is evaluated outside the inner loop.

• All individual trust region radii are equal and are updated simultaneously by the same factor.

Other strategies for practical implementations are discussed in Alexandrov$. We would like to

emphasize that the simultaneous expansion or contraction of the trust region radii is not a technical

requirement.

The algorithm for evaluating the step and updating the trust region radii follows.

Algorithm 3.2 Step Evaluation / Trust Region Update

Given _fk > 0, k = 1,...,M (or k = 1,...,M + 1 for optimization), _,_ > 0,(Smi_ > 0,0 < 7h <

Y2 < 1,al E (0, 1], a2 > 1,xe E _=, ared, pred,

ared
Compute v - pred"
if r < _h then (step not accepted)

else if r > _12then (step accepted)

_k = min{6max,max{6min, a2 * 6k}}.

X c = X+.

else ( step accepted)

_k _-- maX{_min, _k}.

X c -_ X+.

end if

We note that if the step is not accepted, the trust region radii are decreased withoutany safe-

guard. However, if the step is accepted, the next trust region radius is set to be no smaller than a

predetermined positive value _,,i_. This strategy is extremely important in the global convergence

theory. It ensures that the trust region radius is bounded away from zero and hence that the

penalty parameters are bounded from above. This technique was introduced in [16].

3.2.5 The Stopping Criteria

We use the first •order necessary conditions for problem EQC to terminate the algorithm and require

that

IIC (yo)ll (9)

IIC (yl)ll

IICM(YM-1)II <- Etot

IIPTVf(YM)II <_ ,,ol

tNatalia Alexandrov. On implementation of multilevel algorithms for nonlinear equations and equality constrained

optimization. In preparation.
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holdsimultaneously.
Since

II kll= O(lIG(yk-1)ll),

if IIG(yk-1)ll is smaU, II kll win be small and the inner loop iterates Yk win be close to each other,

and in the limit we can show ([1]) that at least a subsequence of the generated sequence of the

outer loop iterates will converge to a stationary point of problem EQC.

The tolerance parameters etot need not be the same, but for convenience, they are taken to be

the same throughout the convergence anMysis.

The reason for requiring such a stopping criterion is theoretical and practical. The conventional

test for the entire norm of the constraint residual being close to 0 does not differentiate between the

individual IlCk(yk_l)ll. It is essential for the convergence proof to determine how close to feasibility

an iterate must be in order for the penalty parameters not to be increased. This is a measure of

feasibility versus optimality. The conventional stopping criterion allows only the total feasibility to

be measured and thus to determine when PM does not have to be increased. But even if PM is not

increased, Pl,..., PM-1 may have to be increased because of the relative sizes of the component

block norms. The conventional criterion does not allow us to measure relative feasibility of one

block of constraints with respect to the others.

In practice, we do not wish to evaluate the residuals at the same point just for the sake of the

stopping criterion.

Other stopping criteria are possible, but the one above is the most natural one.

3.2.6 The Statement of the Algorithm

The formal description of the algorithm follows.

Let the constraints be partitioned into M blocks.

Algorithm 3.3 Multilevel Algorithm for Equality Constrained Optimization

Given 6k > 0, k = 1,..., M,_max > 0,8,_i,_ > 0,0 < 771< ?]2 < 1,al E (0, 1], a2 > 1,xc E _'_.

Outer Loop: Do until convergence:

Yo = Xc.

Compute the trial step.

Inner Loop: Do k = 1,M

If Yk-1 is not feasible then

Compute Sk that satisfies a fraction of Cauchy decrease

condition on ½[]Ck(y/_-l)+ VCk(yk-1)s[]_ restricted to

the intersection of the null spaces of VCj(yj_])Ts = O,j = 1,..., k - 1,

and []ski[ _< Ak[[Ck(yk-])(satisfied automatically).

Yk = Yk-1 + sk.

End if

End Inner Loop

Compute SM+] to satisfy the fraction of Cauchy decrease

condition on the subproblem: minimize CM(SM) restricted to

13
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the intersection of the null spaces of Jj(yj-1)s = O,j = 1,..., M,

and IHI2-<
YM+] = YM + 8M+l"

x+ = YM+I.

The trial step is: _c = Sl + ...+ SM+I.

Update the penalty parameters

Evaluate the step and update the trust region radius

If the step is accepted, set xc = x+.

End Outer Loop

We should note that there is an option to eliminate only a subset of constraints via the described

procedure. In this case, the rest of the constraints and the objective function would be restricted to

the intersection of the null spaces of the Jacobians of the processed constraints, and the resulting

reduced optimization problem would be solved by a chosen method. The discussion of this approach

is left for later work.

4 Global Convergence Results

In this section we give a summary of the global convergence theory for multilevel algorithms.

4.1 Basic Ingredients of a Global Convergence Proof

Our proof contains the general ingredients of a global convergence analysis for a trust-region

method. The first three are requires for a typical analysis of an unconstrained minimization algo-

rithm.

1. The trial step must be shown to satisfy a sufficient predicted decrease condition, usually the

FCD condition. Our algorRhm assumes that the substeps satisfy the FCD condition on the

subproblems. It remains for us to show that the total step from xc to x+ satisfies a suitable

decrease condition.

.

,

The difference between the actual and predicted reduction must be bounded above by at least

a constant multiple of the square of, the total step norm plus multiples of higher powers of

the step norm. This is easily shown multilevel algorithms.

The algorithm must be shown to be well-defined, i.e., we must prove that the ratio of the

actual reduction to predicted reduction can be made greater than a given _1 E (0, 1) after a

finite number of trial step computations. Given 2, it is easy to show that as the trust region

radius approaches zero, the ratio of the actual reduction to predicted reduction approaches

one. For the algorithm to be well-defined we must show that the ratio of the predicted to

actual reduction approaches one faster than the trust region radius goes to zero. This is easily

established for our algorithm.

An algorithm for constrained optimization that uses penalty parameters in its merit function

requires the fourth ingredient.

14



. The penalty parameter in the merit function must be shown to be bounded. The technique is

to prove that the product of the penalty parameter and the trust region radius is bounded by

a constant independent of the iterates. The sequence of the trust region radii is then shown

to be bounded away from zero. Here a crucial role is played by the trust region updating

technique introduced in [16]: after a successful iteration and before starting the next iteration,

the trust region radius is set to be no smaller than a pre-defined value. This way of updating

allows us to prove that the sequence of penalty parameters is bounded from above.

The method for updating the penalty parameters ensures that the sequence of penalty param-

eters is nondecreasing §, which, together with its boundedness, allows us to conclude that the

penalty parameter sequence converges and, moreover, remains constant after a finite number

of increases. This fact is used in the global convergence theorem.

4.2 Assumptions

We make the following assumptions on the problem and the sequence of steps and iterates:

* f, C are at least twice continuously differentiable.

. The gradient of the constraints has full rank. This is a strong assumption, but it is a standard

practice to require it for the sake of convergence proofs. Practical experience suggests that

the breakdown of this assumption does not necessarily diminish the efficacy of our algorithm.

Not assuming full rank would allows us to prove a slightly weaker convergence result.

f(x), Vf(x), V2f(x), HM, C(x), VC(x), VCk(x), V2C_(x),j = 1,...,m,

{[PT_IVCk(x)]T[pT_IVCk(x)]}-I,k = 1,...,M, are all uniformly bounded in normfor all x

in the domain of interest.

Since we require that the Hessian of the objective function be only bounded, we can even take

it to be 0. Of course, such an approximation would lower the effectiveness of the algorithm.

4.3 Summary of the Proof

In this subsection we provide an overview of steps in the convergence proof.

found in [1] and Alexandrov and Dennis ¶

']?he details can be

• We show that under our assumptions, the norm of any intermediate sum of the substeps is

bounded by a costant times the norm of the total trial step.

?'- .

• Several technical results provide workable expressions of the FCD (fraction of Cauchy de-

crease) condition similar to the one used for unconstrained optimization.

• A standard result provides and upper bound on the error between actual reduction and

predicted reduction.

§The global convergence theory for algorithms with nonmonotone penalty parameters has been investigated by

Mahmoud E1-Alem [12].

11Natalia Alexandrov and J. E. Dennis, Jr. A class of general trust-region multilevel algorithms for systems of

nonlinear equations: Global convergence theory. In preparation.
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• By virtue of the penalty parameter updating scheme, the multilevel algorithms have the

property that if an iterate is feasible, the penalty parameters are not increased. We show

that if the iterates are sufficiently close to feasibility, the penalty parameters are not increased

either. This result is crucial to the proof of convergence, giving a sufficient condition for the

penalty parameters not to be increased.

• Next we establish an upper bound on the product of the penalty parameters with the trust

region radii. This result allows us to conclude that the radii are bounded below if the penalty

parameters increase. The penalty parameter sequences are shown to be nondecreasing, which,

together with their boundedness from above, allows us to conclude that the penalty param-

eters tend to a limit, and, moreover, stay constant after a finite number of outer iterations.

The limit is shown to exist, but its explicit expression is not known.

• We have shown that the total trust region radius is bounded away from zero if any of the

penalty parameters are increased. Now we show that radius is always bounded away from

zero. The trust region updating strategy ensures that is is bounded from above.

• The next result guarantees that the algorithm is well defined, i.e., that after a finite number

of outer loop iterations an acceptable step _c with

ared
> _1]

pred -

will be found.

• In the global convergence result, we show that if the objective function is bounded below, then

the sequence of iterates generated by a multilevel algorithm has a subsequence convergent to

a stationary point of the equality constrMned minimization problem.

• As a corollary, we can now conclude that the multilevel algorithm for nonlinear equations is

also globally convergent.

5 Discussion and Concluding Remarks

We have described a broad new class of multilevel algorithms for solving the nonlinear equations

problem and the equality constrained optimization problem. The class can be considered as a

globalization and an extension of the local class of algorithms of Brown and Brent for solving

nonlinear systems of equations.

The main practical appeal of the multilevel algorithms is that in the case of equality constrained

optimization, they allow the user to partition the constraint system arbitrarily, to fit the application,

and to process the blocks of constraints separately. In their finite-difference derivative form, they

require fewer function evaluations than the Newton's method.

The multilevel class is characterized by requiring very mild conditions to be imposed on the

trial steps. All reasonable algorithms satisfy these conditions automatically.

We have established global convergence theory for the entire class. The theory implies conver-

gence of the nonlinear equations solver, which, to the author's knowledge, is the first theoretically

supported method for globalizing Brown-Brent methods. The global convergence theory was made

16



possible by the introduction of the new merit function that takes into account the order of the

constraint processing. The nested penalty parameters are updated by an extension of the scheme

proposed by E1-Alem [10].

The algorithms are expected to be applicable to the problem of the multidisciplinary design

optimization and to serve as a foundation for the study of the general multilevel optimization

problem.

We would like to mention one more application. The design of complex engineering systems is

by nature a multicriteria optimization problem. The design projects are distinguished by very large

numbers of variables, constraints, and expensive analyses. To solve the problem, it is necessary

to break it into disciplines, each of which produces its own optimal design. The discipline designs

are then incorporated into a total design. The multilevel methods proposed here would allow

researchers to integrate constraints obtained from different sources.

To solve the multicriteria optimization problem, it is necessary to decide when an iterate is

optimal. One of the approaches to optimality is the statement of the multicriteria problem as a

multilevel optimization problem, i.e., the problem of minimizing a function on a feasible set, which

is an optimal set for another function, and so on. In such an approach, the user places priorities

on the optimization problems that are to be solved sequentially. We believe that the multilevel

algorithms proposed here will serve as a beginning for a detailed study of the general multilevel

optimization problem.

Directions of research in progress include local convergence rates, implementation, extensive

testing on applications, incorporation of bound and inequality constraints, and extensions to general

nonlinear bilevel and nmltilevel optimization.
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